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A multiple-scale analysis of the Kuramotdivashinsky one-dimensional model of 
a flame front with 2n-periodic boundary conditions is presented. For arbitrary large 
values of the number M of linearly unstable modes there exist stable steady solutions 
of period 2n/N where N = O ( M ) .  These ‘cellular solutions’ exhibit elastic behaviour 
under perturbations of wavelength much larger than 2n/N.  The results are illustrated 
by numerical experiments. Elasticity has its origin in the translation and Galilean 
invariances. Similar invariance properties are likely to be at the root of the 
viscoelastic behaviour of turbulent flows conjectured by many authors. 

1. Introduction 

reads 
The Kuramoto-Sivashinsky (KS) equation, which in the one-dimensional case 

a,u+ua,u+a;u+va;u = 0, (1 .1)  

is one of the simplest p.d.e.’s capable of describing complex (e.g. chaotic) behaviour 
in both time and space. In  fact this equation describes the asymptotic dynamics of 
a great variety of spatially extended systems. Its first occurrence seems to be in the 
study of nonlinear saturation of certain ion modes in toroidal plasmas (LaQuey 
et al. 1975; Cohen et al. 1976). The KS equation also describes reaction-diffusion 
problems (Kuramoto 1978, 1984a), flame-front instabilities (Sivashinsky 1977,1983 ; 
Clavin 1985), the dynamics of viscous-fluid films flowing along walls (Sivashinsky & 
Michelson 1980 ; Slang & Sivashinsky 1982) as well as cross-roll and zigzag instabilities 
in convective patterns (Kuramoto 19843). 

A fairly large number of numerical and theoretical studies have been devoted to 
the KS equation ; the reader is referred to the review paper of Hyman & Nicolaenko 
(1986). Of particular interest for our purpose is the existence of cellular solutions of 
the KS equation with 2n-periodic boundary conditions, which are steady solutions 
of periodicity 2n/N. These have been found numerically by Cohen et at?. (1976), A’ imar 
& Penel (1983), Manneville (1983) and others. They observed that time-dependent 
solutions are often attracted by cellular solutions (with N dependent on the ‘super- 
viscosity ’ u ) ,  possibly after chaotic transients. 

8-2 
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The main purpose of our paper is to show that the stability of cellular solutions 
is related to their viscoelastic behaviour under large-scale weak perturbations. 
Actually this stability is at best marginal: the KS equation is invariant under 
translations and Galilean transformations ; thus there are perturbations which cannot 
relax, namely weak uniform translations and addition of weak uniform velocities. 
When such perturbations are taken to  be slightly non-uniform, slow but non-trivial 
dynamical behaviour sets in. This is a particular case of what is known &s 'phase 
dynamics' (Kuramoto l978,1984a, b ;  Pomeau & Manneville 1979; Coullet & Fauve 
1984, 1985; Fauve 1985). Note that the KS equation itself can be derived by 
phase-dynamics methods. 

Technically, weak large-scale perturbations of the cellular solutions are governed 
by a linear p.d.e. with (spatially) rapidly varying coefficients. This may be asymp- 
totically analysed by the same multiscale homogenization methods that are used in 
deriving the bulk properties of periodically inhomogeneous materials or flows 
(Bensoussan, Lions and Papanicolaou 1978 ; Papanicolaou & Pironneau 1981). Most 
problems studied so far by these techniques have only translation invariance. The 
presence in our case of the additional Galilean invariance gives rise to  second-order 
rather than first-order dynamics in time, as we shall see. 

The paper is organized as follows. Cellular solutions are discussed in $2, and $3 
is devoted to  the multiscale analysis. The results on viscoelasticity are in $4, and are 
illustrated by numerical experiments in $5. Section 6 is an extension of the multiscale 
analysis to cases where the basic solution is time dependent. I n  the concluding $7 
we discuss possible extensions in multidimensional hydrodynamics of viscoelastic 
response to large-scale perturbations. 

2. Cellular solutions of the KS equation 

space. We set 
Restricting to  2x-periodic solutions, let us write the KS equation in Fourier 

+a, 

u(t, 2) = Z eikzG(O(t, k), (2-1) 
-a, 

and obtain from (1.1) 

a,G(t,k)++ik Z G ( t , p ) ' l i ( t , q ) = ( k 2 - v k 4 ) ' l i ( t , k )  ( k = 0 ,  f l ,  f 2 ,  ...). (2.2) 

When v > 1 all Fourier modes (other than the k = 0 mode) are linearly damped so 
that the solution becomes spatially uniform for t --f 00. When v crosses the critical 
value 1 the k = f 1 modes go linearly unstable; a bifurcation occurs, leading to 
non-uniform solutions breaking the translation invariance. Such solutions are 
determined up to a translation and a Galilean transformation. In  a suitable frame 
of reference they satisfy the steady KS equation 

p+q--k 

az(.tu2)+a;u+(i-7)a;u = 0. (2.3) 

Henceforth u(o) will denote the particular 2x-periodic solution of (2.3) with u(0) = 0 
and a,u(O) < 0 which is odd in 5. In  (2.3) v = 1-7; in the following 7 will be our 
bifurcation parameter. The Fourier amplitudes of u(z) for small 7 may be obtained 
by bifurcation techniques or merely by postulating (and afterwards checking) that 
only modes k = f 1 and f 2  are relevant to leading order in 7. The result is 

~ ( + i )  N fi(i27)t, ~ ( + 2 )  N +iy, G ( f n )  = O ( @ )  (n > 2). (2.4) 
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FIGURE 1. Steady cellular solution of the KuramotoSivashinsky equation for various values of 
the bifurcation parameter: ....., q = 0.05; -.-.-., q = 0.2; -, = 0.5; ----, = 0.65. 

For finite 7 the solution of (2.3) is not expressible in closed form. It may also be shown 
that it does not possess the Painlev6 property (see Thual & Frisch 1984). Numerical 
solutions obtained for various values of 7 are shown in-figure 1. 

Stability of the solution u(x)  is controlled by the linearized KS equation 

a,w+Aw = 0,  (2.5) 

(2.6) 

where the operator A is defined as 

A: w-+ a,(uw) +a: w+ (1 - 7) a; w. 

The following properties are quite crucial in our subsequent analysis : 

A[ = 0, 

A1 = 5, 
A+1 = 0. (2.9) 

Here c = a,% (2.10) 

1 is the constant function equal to one and A+ is the adjoint of A with respect 
to the L2 norm. Equation (2.7) follows from (2.3) and (2.6). [ is a marginal mode 
stemming from the translation invariance: if u ( x )  is a solution of (2.3), so is u(x+h);  
hence a, u ( x )  is a solution of the linearized equation. 

Equation (2.8) is an immediate consequence of the definition (2.6). It may also be 
related to the Galilean invariance: if u ( x )  is a steady solution of the KS equation, 
then for any w =+ 0, u,(t, x) = u(z- wt) + w is a time-dependent solution; hence 

(2.11) a,~,l,,, = --azu+ i = -tc+i 
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is a time-dependent solution of the linearized equation : 
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a,(-t[+i)+A(-t[+l) = O .  (2.12) 

Equation (2.8) then follows from A[ = 0 and (2.12). 
We have thus found that C is in the null-space of A and that 1 is mapped by A 

into C. Furthermore, there does not exist a periodic function f such that Af = 1 : since 
the operator A has everywhere space derivatives on the left, the average over the 
period of the left-hand side would be zero, leading to a contradiction. Thus A has 
zero as an eigenvalue of multiplicity (at least) two and its Jordan normal form 

contains at  least one bloc (g i). This result can be strengthened. For 0 < 7 . 5  0.69 

the multiplicity of the eigenvalue zero is exactly two and all other eigenvalues have 
a positive real part (hence give stability). For small 7, when only the 5 modes k = 0, 
- + 1, & 2 are relevant to leading order, the result follows by direct inspection of a 5 x 5 
matrix representation of the operator A (see Appendix A). For larger 7’9, when there 
is no explicit representation of u(x) we calculated the eigenvalues numerically by a 
projection technique extracting the known zero-eigenvalue modes. We found that if 
7 5 0.69 all the other eigenvalues have a positive real part. At 7 x 0.69 a symmetry- 
breaking bifurcation occurs which leads to a non-vanishing even part of u(x ) .  For the 
purpose of the present paper there is no need to explore beyond 0.69. The reader 
interested in this question is referred to Hyman & Nicolaenko (1986). 

In  this paper, we take cellular solution to mean a generalization of the above steady 
solution, but with period 2 x / N  where N is an integer. Thus the first non-vanishing 
Fourier modes are k = +N. Such a solution can only be excited if these modes are 
linearly unstable, i.e. for v < 1/N2. Setting 

(2.13) 

and rescaling variables in the KS equation we find that the 2x/N-periodic cellular 
solutions u N ( x )  are related to the above steady solutions by 

U N ( 5 )  = Nu(Nx) .  (2.14) 

For 0 < 7 < 0.69 such solutions are stable with respect to perturbations of period 
2x/N other than the marginal mode. If N is large there is a large band of linearly 
unstable modes so that the cellular solution could be unstable to perturbations of 
wavelength greater than 2x/N. This question is examined in subsequent sections. 

3. Asymptotic formalism for weak large-scale perturbations 
To study the linear stability of a cellular solution under large-scale perturbations 

we use an asymptotic formalism in which the expansion parameter is the inverse of 
the basic cellular wavenumber 

The cellular solution, corresponding to the superviscosity v = c2( 1 - 7) is then given 
by (cf. (2.14)) 

8 = 1/N. (3.1) 

u,(x) = 0-1u(;). 

Stability is governed by the linearized KS equation 

a, w+ a,(u, w) + a; W + € 2 ( i  -7) a; = 0. (3.3) 



Cellular solutions to the Kuramoto-Sivashinsky model 225 

For perturbations w that are on a scale 0(1)  a multiple-scale homogenization 
formalism is appropriate. We set 

X t 
y = E 1  7 = -  E ‘  

(3.4) 

The choice of the time variable T deserves a digression. It is not obvious that 
interesting dynamics are taking place on that timescale. Indeed, based on turbulent 
diffusivity ideas, we expect that cellular motion on a scale O(E) with a velocity 
amplitude 0(c1) gives rise to a diffusivity 0(1) which, on scales 0(1) has dynamical 
times also O( 1). This, as we shall see, is not incorrect, but there is in addition, on scales 
0 ( 1 )  and timescales O(e) an elastic wave-like phenomenon. To bring out this new 
elastic behaviour there is no need to use more than one time variable; two space 
variables are of course necessary. In  (3.3) we now make the substitutions 

a, + 8-1 a,, a, +- a, + E--1 a@, (3.5) 

and obtain (using also (3.2)) 

a , w + E - w c W  = 0, (3.8) 

dc = A+aB+e2C+e3D+e4D, (3.7) 

.., 
B = (u .  +2a,+4(1-q)a;)az = Ba,, 

(3.11) 

E = (1 -7)a; = Ea;, (3.12) 

where u . means ‘multiplication by u(y )  ’. 
It is of interest to point out some parity properties. Under space reflections 

(x+-x), the cellular solution u and the operators 6 and D change sign, whereas A 
and C remain unchanged. Note that the KdV equation, which has a third space- 
derivative term does not possess similar parity invariance, although i t  shares 
translation and Galilean invariance with the KS equation. The KdV’s large-scale 
dynamics are therefore significantly different, as revealed by the multiscale-expansion 
study of Miura & Kruskal (1974). Stability of large-scale perturbations for the KS 
equation is obtained if all the eigenvalues of de have positive real parts. Except for 
x-independent perturbations which are trivial, dc is a genuine perturbation of the 
operator A governing stability at the cellular scale, already considered in $2. Thus 
the fate of large-scale perturbations depends on what happens to the (degenerate) 
eigenvalue zero of A. At this point we have a choice between various formalisms, 
mathematically equivalent but with different physical flavours. Instead of just 
calculating the perturbed zero eigenvalue as in Cohen et al. (1976), we use a space-time 
formalism that brings out the form of the equation governing large-scale dynamics. 
This approach is in the spirit of the work on homogenization. 

We now proceed with the perturbation expansion. w is expanded in powers of E :  

w = W,+EW1+82WZ+. . . . (3.13) 
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Substitution into (3.6) and (3.7) and identification of various powers of E yields the 
following equat,ions (only the first three are written) : 

Aw, = 0, (3.14) 

Aw,+a,w,+Bw, = 0, 

Aw, +a, w1 + Bw, + Cw, = 0. 

(3.15) 

(3.16) 

We have seen in $2 that A has a one-dimensional null-space proportional to the 

w, = A[, (3.17) 

where A depends on 7 and x. For (3.15) and (3.16) there are solvability conditions: 
the equation 

A f = 9  (3.18) 

is solvable if and only if g is orthogonal to the null-space of the adjoint A+ of A, 
namely the constants. 

function 5 = a,u. Equation (3.14) implies 

The inner product of g with 1 will be denoted ( g ) ,  where 

(3.19) 

If ( 9 )  = 0, (3.18) has solutions of the form 

f = A;;g+PL (3.20) 

where A;; is any pseudo-inverse of A and /L is an arbitrary function of r and x. The 
solvability condition for (3.15) is 

a,(w,) + (BW,) = 0. 

This is identically satisfied. Indeed 

(3.21) 

( 6 )  = (a& = 0 (3.22) 

and <B[> = ( (u+2ay+4(i--)a~)a,u)  = 0. (3.23) 

An alternative proof of (3.23) follows from the observation that u is an odd function 
and thus that 5 is even and the operator B is odd. We now solve (3.15) for wl, using 
(3.17): 

w1 = -AG;[@,A+BA[]+/L[. (3.24) 

The solvability condition for (3.16) is 

a,(w,) + (Bw,) + (Cw,) = 0. (3.25) 

(Cw,) is zero. w1 is substituted from (3.24) giving 

(3.26) 

(see (3.9) for the definition of 8). Terms involving cross-derivatives vanish by parity. 
Since A1 = [ we have (A;:C) = 1.  Hence (3.26) reads 

a; A = c2a; A ,  (3.27) 

where the coefficient c2 (which need not be positive) is given by 

c2 = - (BA;; B[). (3.28) 
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Here we pause again for some comments. Why did we obtain dynamics that are 
second order in time rather than first order ? The technical reason is that the null-space 
of A (i.e. f;) and of A+ (i.e. the constants) are orthogonal; this reflects the Jordan 

bloc (o o) associated with the degenerate eigenvalue zero. The physical origin, as 

we have seen in $2, is the invariance under both translation and Galilean transfor- 
mations and also the fact that the basic solution u ( x ) ,  being odd, is parity-invariant 
(i.e. invariant under simultaneous reversal of x and u). Without parity, e.g. beyond 
the symmetry-breaking bifurcation at 7 x 0.69, we would have cross-derivative 
terms. Note that the method of phaae dynamics in the form developed by Coullet 
& Fauve (1984,1985) provides a compact derivation of the structure of the large-scale 
equation based solely on invariance arguments. 

We now show that the coefficient c2 appearing in (3.27) is an elastic modulus. We 
observe that 

€-1u(y+€PA(7,Z)) = €-'u(y)+€A(7, Z)a,u+O(€2).  (3.29) 

Hence a perturbation €Aha, u of the cellular solution e- lu(y)  is equivalent to an x- and 
t-dependent displacement s2A(t, z) of the cellular variable y. A non-uniform displace- 
ment may be viewed as a &raining of the cellular structure; we therefore expect a 
stress proportional to the strain a,A. To check this we assume for simplicity a 
time-independent straining. In  the one-dimensional KS model the ' Reynolds stress ' 
has only one component, namely one half of the squared 'velocity' u. In  contrast 
with the situations studied by rapid-distortion theory (Townsend 1976; Moffatt 
1967), in the absence of straining there is already a mean stress, balanced by the linear 
terms in the KS equation. When the strain is applied, the velocity changes by an 
amount s ( w , + ~ , +  . . .). The average change in Reynolds stresses is therefore 

astress = ( U W 0 ) + E ( U W 1 ) + .  . .. (3.30) 

The first term on the right-hand side vanishes. The second may be calculated from 
(3.24); thus 

E-lastress = - (UA;; BC)~, A = Cza, A, (3.31) 

0 1  

- 
which is the constitutive equation for an elastic medium of elantic modulus cZ. 

We emphasize that (3.27) is not necessarily a wave equation (hyperbolic). For true 
elastic behaviour c2 must be positive. Determination of this coefficien$ is a task we 
leave for $4. We observe also that true elantic behaviour means marginal stability 
(pure imaginary eigenvalues). Hence when c2 > 0 we must go to higher orders of 
perturbation to find if the waves are growing or damped. For this we need both the 
time 7 and the slower time t .  Thus we substitute 

a, +. a, + €- la7. (3.32) 

The analogues of (3.14)-(3.16) are now (one more level needed) 

Aw, = 0, (3.33) 

Awl + a7 w, + Bw, = 0, (3.34) 

Aw, +a, wo +a, w, + ~ w ,  + cw, = 0, (3.35) 

Aw, + a, w1 +a7w2 + Bw, + Cw, + Dw, = 0. (3.36) 
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Equations (3.17), (3.24), (3.27) and (3.28) are still valid. However, now A and p 
depend also on the time t .  Next we solve (3.35) for w2: 

w2 =-A- p; ( a, wo + a, w1+ Bw, + Cw,) +PC, (3.37) 

where p is an arbitrary function oft, T and 5. The solvability condition for (3.36) gives 

a;p-c2a;p = s, (3.38) 

s = - 2a,, A + a;, A( BA;; By) + aTS, ~(BA;; BA;; 6) 

- alxx WCA;;c> + a*TT A@;: 0 + a r x z  A@;; @A;; By) 

- a m x  w;; &>. (3.39) 

The equation on the timescale t is obtained by the non-secularity condition for p,  
i.e. S should not contain any resonant terms, which is a solution of the wave equation 
(3.27). For implementation of this condition we first solve the wave equation (3.27) 
assuming c2 > 0:  

h(t,  T , X )  = p+(t,X-CT)+p_(t,X+CT). (3.40) 

We further assume that p+ and QI- have vanishing spatial means (otherwise they 
could be eliminated by a Galilean transformation). When (3.40) is substituted into 
(3.39) the right-hand side S becomes a function of q * ( t , z T c ~ )  and their t -  and 
x-derivatives. The non-secularity condition gives two identical equations, which, 
after one integration in the space variable and use of the zero-mean condition, take 
the form of a diffusion equation 

a, q* ( t , 4  = da; p* (4 XI .  (3.41) 

The eddy diffusivity d is given by 

d = 8(A;;( BA;; By- (BA;; By))) + (BA;; A;; By) 

+ (BA;; BA&) - (A;: &) - (CA;; y)}. (3.42) 

Stability requires d > 0. 

4. Transport coefficients and stability results for cellular solutions 
Our first task is to  calculate the elastic modulus c2 and the diffusion coefficient d. 

Analytic determinations can be carried out by a perturbation expansion in 7 near 
the threshold of the first bifurcation. This is done in Appendix A and produces the 
following results : 

c2 = -24+0(7) ,  (4.1) 

d = -+ O(7'). (4.2) 
5 

7 
We see that for small 7 > 0, c2 is negative; hence there is no stability. The 
interpretation of this negative result will be given in $6. 

For finite 7 the coefficients c2 and d must be calculated numerically as is now 
explained. For 7 < 0.69 the steady solution u is obtained by forward integration of 
the time-dependent KS equation 

(4.3) a, u+ 8&2) +a; u + (1  - 7) a; u = 0 

(u is 2n-periodic, u(0) = 0, a,u(O) -= 0). 
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T 
0.100 
0.200 
0.250 
0.300 
0.325 
0.350 
0.375 
0.400 
0.450 
0.500 
0.550 
0.600 
0.650 

C* 

- 14.3 
-6.25 
-2.89 

0.043 
1.35 
2.55 
3.64 
4.62 
6.27 
7.50 
8.32 
8.75 
8.81 

d 

35.6 
11.4 
6.68 
3.63 
2.50 
1.54 
0.719 
0.0085 

-1.16 
-2.11 
- 2.96 
-3.86 
-5.52 

<ua> 

1.05 
1.82 
2.09 
2.29 
2.36 
2.42 
2.45 
2.47 
2.44 
2.34 
2.16 
1.90 
1.55 

TABLE 1.  Shear modulus ca, eddy diffusivity d and mean energy (uz )  of cellular solutions for 
different values of the bifurcation parameter 7 (three-digit accuracy). 

The integration is done by an alias-free pseudo-spectral technique (Gottlieb & 
Orszag 1977). The temporal scheme is a modification of the stabilized leap-frog 
scheme, chosen to give a better representation of high-k dynamics than existing 
schemes (see Appendix B). A resolution of 32 Fourier modes is more than sufficient 
in the range 0 < 7 < 0.65 since all the numerical stiffness in the space variable has 
been eliminated by the asymptotic procedure. Convergence to the steady solution 
with at least four accurate digits occurs in los to lo4 time steps, depending on q (when 
7 is small there is critical slow-down). Once u is calculated, a pseudo-inverse of A is 
determined as follows. We know that A5 = 0 and A1 = 6. Let d be the space of 
functions orthogonal to the two-dimensional generalized null-space of A spanned by 
5 and 1 and let P denote projection onto the subspace dI orthogonal to 8. Instead 
of solving Af = g we first solve in dL the problem 

f may be obtained as the steady solution of 
Af= g, A = PAP, 8 = Pg. (4.4) 

a, ih + Aih = g, h ~ o )  = 0, (4.5) 
which is solved by the same spectral technique as described above. We then finally 
construct 

where ( . , . ) is the inner product of real 2n-periodic functions 

(FJ, $1 = (2x)-l sopnFw $(Y)  dY. (4.7) 

It is a simple exercise to check that Af = g. 
In this manner we have calculated the elastic modulus c2 and the eddy-diffusivity 

d as a function of q with a three-digit accuracy. The numerical calculation was tested 
by comparison with the small-q expansion (4.1) and (4.2). Accurate numerical values 
are given in table 1. Figure 2 gives a plot of c2 and d vs. the bifurcation parameter q .  

Stability of cellular solution with respect to large-scale perturbations is achieved 
when both c2 and d are positive, namely in the window T,I~ < q < q2 (qI x 0.300, 
q2 x 0.40). This is, with a slight change of notation and a better accuracy, the 
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Bifurcation parameter, 11 

FIGURE 2. Shear modulus cz and eddy-diffusivity d vs. bifurcation parameter 7 for cellular solutions 
of the KuramoWivashinsky equation. Note the window of elasticity extending from 7 = 0.3 to 
0.4. 

stability window obtained by Cohen et al. (1976). Our analysis brings out the 
viscoelastic origin of this stability. 

Finally i t  remains to study the stability with respect to perturbations of intermediate 
wavelength. For this we start from the linearized KS equation written in Fourier 
space with a superviscosity v = (1 - r ) / N 2  

Here dN is the Fourier transform of the cellular solution with period 2 n / N :  

1 
J 

(N.l i (p/N) when p is a multiple of N ,  
U N W  =lo 

otherwise ; 
(4.9) 

ti is the Fourier transform of the solution of the steady KS equation (2.3). If the 
initially excited perturbation has wavenumber k, = a N ,  only wavenumbers of the 
form ' k, + multiple of N '  will be excited. We set 

Ca(t, k) = &( t ,  a N + k N ) ,  
and obtain from (4.8) 

(4.10) 

ai &Jt, k) + i(a + k) Z a@) &=(t, q )  = ( (a  + k)' - (1 - v)(a + I I ) ~ )  &Jt, k), (4.1 1 ) 

where F = tN2  = t / E 2 .  It is easily checked that the linear problems with a changed into 
-a or a+ 1 are similar (same eigenvalues). There is no need to investigate values of 

p+q-k 
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FIGURE 3. Stability diagram of cellular solutions. g is the bifurcation parameter, a is 
perturbation wavenumber/basic cellular wavenumber. 

a very close to zero or one since this corresponds to the asymptotic r6gime already 
studied. The stability for intermediate values of the wavenumber ratio a = k, /N is 
studied numerically by integration of (4.11) using a modification of the pseudo-spectral 
method used for the KS equation. The main difference is that 2;, does not possess 
hermitian symmetry so that complex-to-complex Fourier transforms must be 
used. Figure 3 shows the stability diagram in the (7, a)-plane. Note that the diagram 
is symmetrical with respect to a = i. We have made a detailed investigation of the 
window < 7 < q2 already found t o  be stable for small a .  We find it stable for all 
values of a .  Hence the existence of stable cellular solution of the KS equation is 
established : for any integer N such that 

kc(l-72)4 < N < k,(l -7$ (k ,  = v-$) ,  rl = 0.300, q2 = 0.40, (4.12) 

there is a stable cellular solution of period 2x/N. 

5. Numerical experiments 
Next we give numerical illustrations of the elastic properties of cellular solutions. 

For this we need a full simulation including all relevant scales of motion. All numerical 
experiments reported here are with 256 Fourier modes, 15-digit accuracy, using the 
pseudo-spectral method discussed in 94 and Appendix B. Because of disaliasing, the 
maximum wavenumber k,,, is 85. Very high accuracy of the spectral calculation is 
ensured only if 6kmax % 1, where 6 is the width of the analyticity strip, i.e. the distance 
from the real-s domain to the nearest complex singularity (Frisch & Morf 1981 ; Frisch 
1983; Sulem, Sulem & Frisch 1983). We have found that 6 can be appreciably smaller 
than the scale k;' determined by k, = v - i ,  which is approximately the number of 
linearly unstable modes. A similar problem arises for the Sivashinsky equation for 
which Thual, Frisch & HBnon (1985) obtain solutions where 6 scales like ( k ,  In kc)-'. 
To be on the cautious side we have always taken k, less than 8. The first experiment 
starts with a cellular solution which has basic wavenumber k = 7 ,  corresponding to 
v = 0.0123 (this gives '11 = 0.397 close to  the upper edge r2 of the window of 
true elasticity). The maximum amplitude is approximately 25. The time step is 
St = 0.0002. A steady state is achieved in less than 200 time steps. We then introduce 
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I I 

0 1 2 3 4 5 6 
Space variable 

FIGURE 4. Elastic relaxation of weakly perturbed cellular solution. Basic wavenumber is 
k = 7(v = 0 . 0 1 2 3 , ~  = 0.397). Initial perturbation is 0.8 cosr. Time step is 2 x lo-*. Output is every 
100 time steps. Successive outputs are shifted by Su = 4. 

a (weak) perturbation of 0.8 cos z at wavenumber 1 and follow its evolution over 
15000 time steps. Eventually relaxation to the unperturbed cellular solution is 
obtained. In between, there are weakly damped standing-wave elastic oscillations, 
as predicted by the theory; these are shown in figure 4 which represents u(t,z) at 
output times 100 time steps apart (each new output is slightly shifted). 

The second experiment shown in figure 5 has initially a strong large-scale 
perturbation superimposed on a cellular solution : uo(x)  = 6 cos z + 2 sin z + 30 sin 72. 
The superviscosity is v = 0.0123 and 6t = 0.0002. Output is every 100 time steps. 
Globally the rolling hill landscape of figure 5 looks chaotic; but there is considerable 
order in this chaos ; the small-scale structure remains essentially cellular with 
superimposed dislocations of the elastic structure (Shraiman 1985). In figure 5 we only 
show the output up to 4 x lo4 time steps. We have continued the integration up to 
2 x 105 time steps and still found chaos. In other cases the chaos is more transient. 
For example with uo(z) = 6 cos z + 2 sin x + 20 sin 42, v = 0.04, St = 0.0002 there is 
transient chaos going over into a steady cellular state after about 15 x lo3 time steps 
(not shown). The existence of transient (or metastable) chaos for the KS equation 
seems to have been reported for the first time by Cohen et al. (1976) under the name 
‘bouncy solutions’. Their numerical experiments and those of Manneville (1983) and 
Shraiman (1985) suggest that, eventually, a stable steady cellular solution is 
obtained. 
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Space variable 

FIGURE 5. Chaotic evolution of strongly perturbed cellular solution. Initial condition 
u&) = 6 cos x + 2 sin r + 30 sin 72. Otherwise, as in figure 3, except Su = 5. 

6. Elasticity of time-dependent and chaotic solutions: an alternative 
expression for the shear modulus 

We now show how elasticity results can be carried over to time-dependent (possibly 
chaotic) solutions of the KS equation. We limit ourselves to solutions that are still 
cellular (2.rc/N-periodic). Solutions that are spatially more disorganized (before 
perturbation) are not considered; otherwise we might not be able to distinguish the 
unperturbed chaos from the perturbation. This may be a pathology of one- 
dimensionality : numerical experiments reveal that non-cellular chaotic solution of 
the KS equation have a low-k energy spectrum which is almost flat. In  contrast, 
three-dimensional Navier-Stokes turbulence has a low-k energy spectrum falling off 
like a positive power of k (Lesieur & Schertzer 1978 ; Frisch, Lesieur & Schertzer 1980). 

We outline the time-dependent formalism, emphasizing only what is new. In 
addition to the elastic time 7 and the diffusion time t we need a third fast time cr, 
characteristic of cellular motion. This motion is on a timescale O(c2) in the variable 
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t .  The unperturbed KS equation, which we describe in the ‘cellular variables’ u and 
y, is governed by 

where v“ = v / s z  is O( 1). Since we are not close to the first bifurcation threshold the 
parameter 7 = 1 - v” is not particularly useful. The boundary condition for (6.1 ) is 
2mperiodicity in y. The linearized KS equation involves the time-dependent operator 
A = a,(u. ) +a; + 63;. As before, we define g = a,u. We have 

a,u+a,(h2)+a;u+v”a;u = 0, (6.1) 

(a,+A)g = 0, (6.2) 

which plays the role of the equation A(: = 0, cf. $3. The solvability condition for 
equations of the form 

is again ( 9 )  = 0; the angular brackets are now understood to mean a space-time (or 
ensemble) average. 

In  the sequel we shall limit ourselves to elastic behaviour neglecting diffusive 
corrections. It therefore is sufficient to  use the times T and u. The analogues of 
(3.14)-(3.16) are 

(3, + A1.f = g7 (6.3) 

(a, + A) wo = 0, (6.4) 

(a,+A)w,+a,w,+Bw, = 0, (6.5) 

(a,+ A) w2 + aT w1 + B ~ ,  + cwo = 0, (6.6) 

where B and C are defined as in $3 ((3.9) and (3.10)) in terms of the time-dependent 
u. From (6.4) we obtain 

The solvability condition for (6.5) is satisfied as in $3. The solution of (6.5) is 
conveniently written as 

w1 = w p  a7 A + w y )  a, A +p(7, x) g, (6.8) 

where (a,+A)wp)+Y= 0, (6.9) 

wo = A(7,x) g. (6.7) 

(a, +A)  wi2) + Bg = 0. (6.10) 

Equation (6.9) has the obvious solution wy) = - 1. It is now better to use explicit 
notation to rewrite (6.10) and to write the solvability condition for (6.6); we obtain 

a, wy)  + a,(uwy)) +a; wp) + v”q, + ay(h2) + 2a; u + 4a: u = o (6.1 1) 

and a y - C 2 a ; A  = 0, (6.12) 

and G2 = (UW?)).  (6.13) 

At a formal level we have again obtained a wave equation describing elastic 
behaviour (provided the elastic modulus c2 is finite and positive). There is a new 
difficulty: the homogeneous version of (6.11) is just the linearized KS equation. This 
equation controls the growth of infinitesimal perturbations. I n  the chaotic case there 
are (by definiti0n)positive Lyupoumv exponents (Pumir 1982; Pomeau, Pumir & Pel& 
1984; Manneville, Pumir & Tuckerman 1984). Hence the solution of the linearized 
KS equation and, similarly, the solution of (6.11) will grow exponentially with the 
time u. At this point i t  is therefore not a t  all obvious that (u(g,  y) wi2)(u, y)) will have 
a limit for cr+ co. If such a limit exists i t  can only arise through cancellation in the 
averaging process. Consequently, i t  would be exceedingly difficult to  calculate the 
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shear modulus c2 by first solving (6.1 1 )  numerically and then performing a Monte 
Carlo averaging. 

Actually c2 has an alternative expression which is considerably more manageable, 

(6.14) 
namely Ba(V"E(4) 

aa ' 

where E ( 4  = (!p2) is the mean energy of the solution of the nonlinear KS equation 
(6.1). 

To prove (6.14) we generalize an argument of Kuramoto (19843) and introduce the 
family of modified KS equations 

c2 = 

(6.15) 

with the same periodicity, 2x, as the KS equation. The modified equation is obtained 
by stretching the y-variable by a factor (1 + p ) .  For small p we claim that 

up = u+pwy)+o(p2), (6.16) 

where wy)  is the solution of (6.11). The validity of (6.16) is readily checked by 
linearization (in p )  of (6.15). We thus have 

We now make the changes of variables 

and obtain 
u =  ( l+p)4,  cr(l+p)2=a", 

a,a+a,(p)+a;a+v"(i + P ) 2 a ; . i i  = 0. 

(6.17) 

(6.18) 

(6.19) 

This is the original KS equation with a modified superviscosity. We assume that the 
KS model has an  attractor with statistical properties depending differentiably on p 
(for small p) .  We then obtain 

(6.20) 

which gives the desired result (6.14). Note that (6.14) holds also for steady regimes. 
We have checked that it is in precise agreement with the results reported in $4. 

For the physical interpretation of (6.14) there is some advantage in rewriting the 
KS equation with variable spatial period L. We set 

(6.21) 

I n  the new variables all the coefficients of the KS equation become unity. The 
expression for the shear modulus is now 

(6.22) 

Elasticity is thus obtained when the 'energy' per unit length (&ii2) is a decreasing 
function of the length L : pulling out the cellular structure is then depleting its energy 
(or Reynolds stress). This establishes a momentum flux which tends to restore the 
unstretched state. It is now quite clear why we obtained a negative shear modulus 
for small 7 (4.1). Near the threshold (7 = 0, L = 211.) where the cellular solution is born 
from zero by a pitchfork bifurcation, the amplitude and therefore the energy per unit 
length are growing functions of L. 



236 U .  Frisch, Z .  8. She and 0. Thual 

7. Conclusion 
We have given in this paper an example of how viscoelastic behaviour arises in 

a simple onc-dimensional system exhibiting simultaneously translation, Galilean and 
parity invariances. We have here concentrated on specific aspects of the KS equation, 
including a detailed calculation of the transport coefficients. The presence of a 
viscoelasticity window in the controlling parameter explains the existence of stable 
steady cellular solutions which eventually seem to attract all solutions, possibly after 
long-lived chaotic episodes, a situation common in dynamical systems (Kantz & 
Grassberger 1985). 

The theory developed here for a special case, the KS equation of flame fronts, can 
be considerably generalized, provided that the key ingredients, invariance properties, 
are prescrved. This is made particularly clear by the phase-dynamics approach 
(Coullet & Fauve 1984, 1985; Fauve 1985) in which the structure of the large-scale 
(phase) equations is directly related to the invariance properties of the equations. 
Phase dynamics also provide a particularly compact derivation of the nonlinear terms 
when finite-amplitude perturbations are considered (see Shraiman 1985 for the case 
of the KS equation). 

It must be stressed that viscoelastic effects are not limited to one dimension. For 
example Zippelius’ & Siggia’s (1983) derivation of Busse’s (1972) oscillatory instability 
by multiscale expansions for free-slip convection may be viewed as a consequence 
of Galilean invariance, as noticed by Fauve (1983). Furthermore, in computing 
transport coefficients by multiple-scale expansions, there is no need to  assume that 
the basic structure is spatially periodic ; a stochastic structure, possibly time 
dependent, will do as well as long as i t  has suitable (statistical) invariance properties. 
For example Papanicolaou & Pironneau (1981 ) calculated the three-dimensional 
turbulent diffusivity for a passive scalar by a stochastic variant of homogenization 
theory. 

Turbulent transport (on large scales) need not be purely diffusive. It has been shown 
by many authors that turbulent flows may sometimes behave like a viscoelastic 
substance (Townsend 1976; Rivlin 1957; Liepmann 1961 ; Moffatt 1967; Crow 1968; 
and references therein). This is usually derived either by use of rapid-distortion theory 
in which nonlinear terms are neglected or by assuming some form of weak turbulence. 
We believe that viscoelastic response of a turbulent flow to weak large-scale 
momentum perturbations should hold irrespective of the weakness of the turbulence, 
as long as the turbulent flow has (at  least approximately) the invariance properties 
required to ensure that the transport equation is of second order in the time and space 
variables. These are the invariance under translations, Galilean transformations and 
parity transformations. The latter is here defined as simultaneous reversal of the 
position and velocity vector. Parity invariance, which does not hold in the presence 
of helicity, is a sufficient condition for the absence of first-order terms in 
the momentum transport equat’ion. Likely candidates are astro and geophysical 
turbulent flows maintained by shear or convective instabilities and confined by stable 
stratification above and below a horizontal layer (e.g. solar granulation). 

Finally, in empirical modelling of turbulent flows for engineering applications, one 
should not be afraid of relaxing the condition of scale separation required for an 
asymptotic theory. Eddy-viscosity effects which in principle require scale separation 
are commonly used in one-point and subgrid-scale modelling of turbulence. Elastic 
effect,s can be incorporated as well. This mey be done in a direct ad hoc way (She, 
Frisch & Thual 1985) or by homogenization methods (McLaughlin, Papanicolaou & 
Pironneau 1983; Chacon & Pironneau 1985). 
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Appendix A. The bifurcation threshold 

relevant Fourier components of the cellular solution are given by (2.4), i.e. 
Near the first bifurcation threshold, i.e. for v = 1 - 7 , ~  small and positive the only 

u(z) = -2(127): siny-27 sin2y+h.o.t. (A 1) 

(h.0.t. = higher-ordgr Srpsj. 
Theoperators A, B, C,  D, Eof (3.8)-(3.12) neededfor theasymptoticexpansionof53 

may then be approximated by their Galerkin truncation, involving Fourier com- 
ponents k = 0, .t 1 and +2, i.e. by projection onto a function of the form 

(A 2) w(z) = uo + u1 cosy + u2 cos 2y + u3 sin y + g4 sin 2y. 

Note that the average of w(x) is simply go. 

Straightforwardsubstitutionoftheexpressionsfor A, B, C, 6, E anduseof(A 1)gives 

C = diag (1, - 5 ,  -23, - 5 ,  -23), (A 5 )  

0, 0, 0, 0 

0, -2, 0, 0 

E = diag (1, 1, 1 ,  1 ,  1 ) .  

In  (A 3) and (A 4) a = - 2( 12y)f. The eigenvalues of A are found $0 be 

0, 0, 12+0(y),  12+0(7), 2y+O(y2). (A 8) 
We have thus checked that for y > 0 and small the eigenvalue 0 is double and that 
all other eigenvalues have positive real parts. The expressions (4.1) and (4.2) for the 
transport coefficients are obtained by substituting the matrix approximations into 
(3.28) and (3.45). 
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Appendix B. The time-stepping scheme 
The Kuramotcdivashinsky equation has a fourth power of the wavenumber in 

the linear damping term. At the high-k end of the simulation the modes are linearly 
very quickly damped ; hence they adiabatically adjust to whatever input is provided 
by the nonlinear term, which varies on a considerably slower timescale since it 
involves interaction of modes with lower k’s. I n  Haken’s (1983 and references therein) 
terminology the high-k modes arc ‘slaved’. A simple linear model that displays this 
phenomenon is 

dq 
- = -aq+ f ( t ) .  dt 

Suppose that a > 0 and aT $- 1 where T is the typical timescale of variation of f(t). 
Then, to leading order in (aT)-l, we get the slaved solution 

f ( t )  y ( t )  = -. 
a 

We wish to find a time-stepping scheme for (A 1 )  which 
(i) reduces to  the leap-frog scheme for 01 = 0 (this scheme, when appropriately 

st,abilized, is very convenient for spectral calculations, other explicit second-order 
schemes can also be dealt with) ; 

(ii) is second order in time; 
(iii) is unconditionally stable when f = 0 ;  
(iv) reproduces slavery t o  leading order in (01T)~l .  
Consider the following standard schemes : 
( a )  Leap-frog Crank-Nicolson 

( b )  Exponential leap frog 

Both satisfy (i)-(iii) but not (iv). For large a& scheme ( b )  gives exponentially small 
q’s instead of algebraically small ones. Scheme (a) will essentially make qn reverse 
its sign a t  each time step. Iff, is kept constant, qn eventually goes to the correct 
value f / a  but this takes a time O(a8t2) instead of O(a-’). 

A satisfactory scheme is 
( c )  ‘Slaved frog’ 

This is obtained from the exact relation 
t+8t 

f (4  ds, (B 6) q(t + &) = e-zaat q(t - &) + e-a(t+Jt-s) 11,, 
by pulling out f ( s )  at the middle time t = t,. 

Implementation of the slaved frog in a spectral simulation is straightforward. For 
example, for the KS equation one interprets y to be the Fourier amplitude of mode 
k, a is vk4 - k2 and f is the Fourier transform of - c7s(iu2). The slaved frog may also 
be useful for certain stiff problems such as convection a t  low Prandtl numbers. 



Cellular solutions to the KuramoteSivashinsky model 239 

Welearned, after this work was completed, that  C. Basdevant, N. Corfieldand P.-L. 
Sulem have used similar schemes. 
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